

Rainfall estimation from satellite

Rômulo A. Jucá Oliveira Marielle Gosset

20/09/2022

Rainfall estimation from satellite

Stimating rainfall with satellite : how

- Satellite Rainfall estimation principles
- Current products, quality, applications
- Some perspectives

Large variabilities Spatial-temporal /vertical / intensity

Detailed Characterization of Precipitation ٠

Microphysical Scale

7 mm

13 mm

Hydrometeors

**

0 3 mm

> Complex Multi-scale (time and space) – Intermittent Difficult to observe and quantify

□ The Remote Sensing of Precipitation

- → Orbits:
 - \rightarrow Geostationary
 - \rightarrow Polar
 - \rightarrow Low-Earth Orbit (LEO)
- → Resolutions:
 - \rightarrow Spatial
 - → Temporal
 - \rightarrow Spectral
 - \rightarrow Radiometric

□ The Remote Sensing of Precipitation

→ Satellites

- ➔ Orbits:
 - \rightarrow Geostationary
 - \rightarrow Polar
 - \rightarrow Low-Earth Orbit (LEO)
- → Resolutions:
 - \rightarrow Spatial
 - → Temporal
 - \rightarrow Spectral
 - \rightarrow Radiometric

The current global coverage

Rainfall estimation from satellite – The initial methods

24 27 30 33 36 39 41 44 47 50 Hidroestimador

Rainfall estimation from satellite – The addition of microwaves

Rainfall estimation from satellite – Instant rain rate (overpass/snapshot)

Level-2

The GPM L2 PMW rainfall estimation algorithms:

- ✓ Goddard Profiling algorithm (GPROF)
- ✓ Precipitation Retrieval and Profiling Scheme (PRPS)

Algorithm	GPROF					PRPS
Type	Imagers (Conical scan)			Sounders (Cross-track scan)		
Sensor	SSMIS	AMSRE2	GMI	MHS	ATMS	SAPHIR
Satellite	DMSP-F16,	GCOMW1	GPM	NOAA18, 19,	NIPD	MEGHA-
	F17, F18			METOP-A, B	1111	TROPIQUES
Channels	19.35-183.31	6.7-89.0	10.7-183.31	89.0-183.31	23.0-183.31	183.31 GHz
	GHz	GHz	GHz	GHz	GHz	(x6)
Retrieval	45 - 74	14 - 22	10.0 - 19.1	17.1 - 21.6	165 - 160	10 - 10
resolution	43×74	(19.7 CH)	(10.9×10.1)	1/.1 X 21.0	10.5 x 10.2	10 x 10
(km)	(19.35 GHZ)	(18.7 GHZ)	(18.7 GHZ)	(at hadir)	(at hadir)	(at hadir)

Instantaneous observations / Retrievals

GPROF2017v1 (F18.SSMIS V05A) 20140312-S001644-E004150

GOES13 (Infrared IR107) 2014-03-12T00-15-00

10

8

surfacePrecipitation (mm/h)

210 220 230 240 190 200 250 260 Brightness Temperature (K)

Adapted from Kidd, 2019

Rainfall estimation from satellite – gridded / regular time step

IMERG 10 km/30 minutes

HYDROLOGICAL PREDICTION - FLOOD WARNING

MGB HYFAA NIGER :

Real time demonstrator based on GSMAP_now product + MGB hydro model

With Niger Basin Authority

Model Hydro MGB Niger : Fleischman et al., 2018. Modelling two-way coupling of hydrologic and hydrodynamic processes in large semi-arid wetlands

ANALYSIS OF EXTREME EVENTS - ANOMALIES

Pakistan 2022 monsoon

→ 43 years Precipitation analysis over Pakistan (JJA monsoon season)

MSWEP V2.8 0.1°/daily precipitation product

doi: https://doi.org/10.1038/d41586-022-02813-6

QUANTITATIVE ASSESSMENT / VALIDATION ?

Lack of high resolution (kilometric/sub-hourly) and quality checked rain Maps for validation Especially in the Tropics

Zambrana, Gosset et al. IPWG 2022 Assessment of high resolution products against weather radar in French Guyana

Analysis:

- Coherent to the naked eye
- Satellite estimates are smoother
- Spotty, high intensity rain very difficult to see with satellite
- Differences among algorithms (GSMAP / IMERG same input data ...)

Take home messages

Rainfall Estimation from Satellite – Significative Evolution since the early days

- Initial estimates (70's-80's) based on IR Only; Much more information relevant to rainfall/hydrometeors with microwave (passive and active) since the 90's - TRMM and GPM (with MT for Tropics) in particular in the 21st century.
- Algorithms greatly improved thanks to better understanding of the microphysics Combination with models (Bayesian approach; assimilation etc..)

Current limitations

- Products still uncertain at their highest resolution Ok at 50 km/3h (cf Guillotau et al.)
- Real time / Mountainous regions / coastal areas (warm rain) still need improvement
- Assessing the uncertainties in the Tropics still difficult because of lack of GV / QPE at the required resolution.

Perspectives

- Improve/enhance input information : newspace / constellations of small MW satellite and Active MW sensors ; new sensors in Geostationary (lightning) ; Analyse dynamics.
- Progress in high-resolution numerical Weather model /microphysics ->assimilation/merging
- New algorithms based on IA
- Merge with new source of information (telecommunication networks / Citizen observations)

Online resources :

http://ipwg.isac.cnr.it

Thank you Merci - Obrigado

romulo.oliveira@hydro-matters.fr <u>Marielle.Gosset@ird.fr</u>

20/Sept/2022