Remote Monitoring of Snow Water Resources

Marianne Cowherd and Manuela Girotto cowherd@berkeley.edu University of California, Berkeley

Webinar on Satellite Data for Hydrological Applications 20 September 2022

Outline

- 1. The global importance of snow
- 2. Overview of satellite remote sensing of snow
- 3. Case study: post-fire snow hydrology

Q: What makes snow different from rain? A: Timing

Snow hydrology is human hydrology

Immerzeel et al., 2019

Importance of snow

Rerkeev

1.

cowherd@berkeley.edu 4

Snow hydrology is human hydrology

Immerzeel et al., 2019

source?

Rerzeev

1.

Snow hydrology is human hydrology

Immerzeel et al., 2019

How many

source?

Passive Visible/Near Infrared

Examples: Landsat, MODIS, many commercial satellites

- + Daily to weekly repeat times for measurements
- + Available in near-real time
- + Used as inputs to models to update estimate for specific mountain areas
- Cannot estimate snow under clouds
- Estimate quality is worse in vegetated areas
- Cannot directly estimate snow depth or SWE

Example: MODIS snow cover of the current drought in the Po River in Italy

Satellite monitoring of snow

Rerzelev

2.

Passive Microwave

Examples: AMSR-E

Tedesco and Narvekar, 2010

+ Estimates of brightness temperature linked to water content

- Underestimates SWE when vegetation is present
- Wet snow and dry snow scatter microwaves differently

Active Microwave

- + Estimates of brightness temperature linked to water content
- + Can observe under clouds
- + Signal is sensitive to density and depth
- Wet snow and dry snow scatter microwaves differently
- Many sensors are new

2.

- Current snow estimates **do not agree** with each other
- There is currently **no dedicated satellite mission** for snow observation

Post-fire snow hydrology

- The number, size, and intensity of wildfires in snowy basins are increasing around the world
- Fires change the snow energy and mass balance through snow-vegetation interactions and increasing radiative forcing from black carbon deposition
- Season-long snow presence make snow vulnerable to dramatic energy input change

3.

Post-fire snow hydrology

Gleason et al., 2019

Fires in the Western US

Berkelev

3.

Does streamflow change after a fire?

Post-fire snow hydrology

3.

- 1. Model climate-streamflow relationships from pre-fire data
- 2. Apply models to post-fire climate data
- 3. Compare post-fire observations to model predictions

15

Does streamflow change after a fire?

- 1. Model climate-streamflow relationships from pre-fire data
- 2. Apply models to post-fire climate data
- 3. Compare post-fire observations to model predictions

In general, streamflow increases after fires in the Western United States (*Williams et al., 2022*)

Satellite monitoring helps us understand if that increase comes from snow-forest interactions

Vegetation cover drives local variance in response to snowfall events

1. In-situ monitoring where land cover change is driven by wildland fire

Post-fire snow hydrology

Kor 20

3.

2. MODIS fractional snow covered area

Not all post-fire hydrology is the same

In cold areas, **forest cover is detrimental to snow duration**

In warm areas, **forest cover is protective snow duration**

Conclusions

- 1. Snow is an important global water resource
- 2. Some properties of snow are monitored by satellites, snow water equivalent cannot be directly estimated from space
- 3. Post-wildland fire snow hydrology is difficult to predict; satellite monitoring of water resources provides valuable management and scientific information

Acknowledgements

Manuela Girotto, UC Berkeley

Scott Stephens, UC Berkeley

Gabrielle Boisrame, Desert Research Institute

Sabrina Chui, Blue Forest Conservation

U.S. Department of Energy, Computational Science Graduate Fellowship

Thank you!

Marianne Cowherd

cowherd@berkeley.edu

